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Abstract

Uniform Meaning Representation (UMR) is
successor to Abstract Meaning Representation
(AMR), graph-based framework for represent-
ing the semantics of natural language data.
Graphs from both frameworks require exten-
sive effort by trained annotators to produce,
motivating the need for automating parts of the
annotation process. While current approaches
struggle to produce faithful UMR graphs from
natural language inputs, converting existing
AMR graphs (of which there are plenty) is a
more tractable task. A key part of the con-
version process requires incorporating features
added to the UMR framework that are not
present in AMRSs. One such addition is aspect,
which marks the temporal structure of eventive
predicates. In this paper, we introduce RULE-
SPECT and GRAPHSPECT, two novel methods
for producing UMR aspect annotations using
existing AMR graphs and purely natural lan-
guage inputs, respectively.

1 Introduction

Aspect annotation is a core component of Uni-
form Meaning Representation (UMR), a graph-
based semantic framework designed to represent
meaning in a cross-linguistically applicable and
computationally tractable way (Van Gysel et al.,
2021). Unlike tense—which encodes when an
event occurs—aspect captures the ~ow: the inter-
nal temporal structure, duration, and completion
of events (Comrie, 1976; Croft, 2012; Donatelli
et al., 2018). It allows a semantic system to dis-
tinguish between, for example, habitual, ongoing
processes, or completed achievements, enabling a
more nuanced interpretation of event semantics.
In UMR, aspect is applied to all eventive ele-
ments, otherwise known as eventualities, in a sen-
tence—typically the concept aligned with the main
finite verb, as seen in Figure 1. However, the la-
bel refers to the full predication, encompassing
the verb and its arguments (Donatelli et al., 2019;
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Figure 1: Example UMR graph with the eventive item
highlighted and the Activity aspectual marker.

Kingsbury and Palmer, 2003). These aspectual
categories align with well-established event typolo-
gies, such as states, activities, accomplishments,
achievements, and processes (Bach, 1986), orga-
nized into a lattice that supports both coarse- and
fine-grained granularity. Unlike surface-level gram-
matical cues (e.g., auxiliaries or verb morphology),
UMR aspect is a semantic feature meant to gener-
alize across languages, and thus it is informed by
deeper event structure rather than morphosyntac-
tic form that can generalize across typologically
diverse languages (Van Gysel et al., 2021).
Annotating aspect is no simple feat. Theoreti-
cal debates span decades, including disagreements
about the universality of aspectual categories, the
granularity of classifications, and their interac-
tion with tense and modality (Reichenbach, 1947;
Vendler, 1957; Comrie, 1976; Langacker, 2011;
Dowty, 1986; Hinrichs, 1986; Moens and Steed-
man, 1988; Klein, 2013; Chang et al., 2022; Partee,
2011; Croft, 2012). There are also debates on its an-
notation corpora and how to go about computation-



ally modeling (Pustejovsky et al., 2003; Derczyn-
ski, 2017; Pustejovsky et al., 2017; Friedrich and
Palmer, 2014; Friedrich et al., 2016; Mostafazadeh
et al., 2016; Laparra et al., 2018; O’Gorman et al.,
2016).

From a typological perspective, some languages
encode aspect more saliently than others, further
complicating annotation for multilingual or cross-
linguistic frameworks. For example, American
Sign Language and Mandarin Chinese prioritize
aspectual distinctions over tense (Li and Thomp-
son, 1989; McDonald, 1982), while Hindi includes
a dedicated aspect morpheme separate from tense
or mood (Van Olphen, 1975). In contrast, many
Indo-European languages conflate aspect and tense
morphologically, often obscuring the underlying
semantic distinctions.

Given these complexities, manual aspect anno-
tation is time-consuming, error-prone, and highly
sensitive to annotator interpretation. Yet its inclu-
sion in UMR is foundational to achieving a more
expressive, cross-linguistic meaning representation
system. UMR builds on earlier formalisms such
as Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013), where aspect was initially
introduced to support event-based reasoning but
was never fully adopted into standard annotation
guidelines. Donatelli et al. (2018, 2019) formalized
aspect in UMR, laying out annotation principles
and aligning event types with lexical frames.

To address the bottleneck of manual annotation
and support UMR’s broader adoption, we propose a
system for automatically assigning aspectual labels
to English meaning representation graphs using
neural and neurosymbolic approaches. We address
two central tasks:

* Task 1: Given an AMR graph, can a language
model predict the appropriate UMR aspect
label? This task treats the semantic graph as a
structured input to train graph-aware models
that predict aspect labels.

* Task 2: Can we bypass the graph altogether
and predict UMR aspects directly from the
raw text? This task explores whether large
language models can map natural language to
aspect categories in the absence of explicit se-
mantic parsing found in the AMR or be found
more efficiently through other pipelines. This
method necessitates finding both the predi-
cates and the aspects of those predicates. This

method is ideal given the future use case of
having an automated UMR parser that does
not rely on partial AMRs.

To support both tasks, we committed to a large-
scale annotation project that resulted in a new
dataset of 1, 184 manually annotated aspectual la-
bels added onto the eventive predicates of AMR
graphs. This annotation effort provides gold-
standard supervision for model training and evalua-
tion.

We develop and evaluate two primary modeling
approaches: RULESPECT, a neurosymbolic model
that integrates AMR graph structure, sentence text,
and hand-engineered symbolic rules; and GRAPH-
SPECT, a fully neural graph-attention pipeline that
operates over sentence text alone.

These are evaluated against a set of bench-
mark systems, each designed to highlight different
modeling challenges and trade-offs. The bench-
marks include an attempted comparison against
AUTOASPECT, a prior system developed in Chen
et al. (2021a) for AMR graphs. We also tested
Large Language Model (LLM) prompting using
few-shot or in-context learning setups. This base-
line serves two purposes: (1) as a performance
lower bound for non-graph-based models, and (2)
as a generator of silver-standard data used for pre-
training or augmentation in our main models. Fi-
nally, a benchmark classifier with embeddings that
tests whether static or contextual word embeddings
extracted from LLMs e.g., sentence-level embed-
dings from BERT or GPT) are sufficient for aspect
prediction.

Our findings highlight the value of integrating
symbolic reasoning and graph structure for aspect
classification, while also demonstrating the feasibil-
ity of text-only models for future automated UMR
pipelines. While our current results show LLM to
be the most promising strategy, previous experi-
ments on smaller subsets of the data demonstrated
that our neurosymbolic approach can outperform
LLM prompting in certain cases.

2 Related Work

In this section, we further detail information on
UMR annotation, describe other automated annota-
tion methods, and provide an overview for graph
neural networks and neurosymbolic approaches.



2.1 Aspect Representation

The semantics of aspect has been a long-standing
topic of debate in linguistic theory. Seminal works
by Reichenbach (1947), Vendler (1957), and Com-
rie (1976) lay the foundation for distinguishing be-
tween types of eventualities—states, achievements,
activities, accomplishments—based on their tem-
poral and structural properties. Dowty (1986) and
Langacker (2011) further explore the interaction
between aspect, argument structure, and lexical se-
mantics. These formalisms inform how events are
modeled in UMR today.

Later developments such as Hinrichs’ interval-
based models (1986), Moens and Steedman’s narra-
tive structure theory (1988), and Klein’s temporal
logic (2013) introduce more formal ways to en-
code event structure and its temporal entailments.
These insights highlight the need for frameworks
like UMR to go beyond grammatical tense and
directly encode aspectual distinctions based on se-
mantic content.

Aspect has been incorporated into semantic an-
notation and event modeling efforts, particularly in
temporal information extraction. TimeML (Puste-
jovsky et al., 2003) and its follow-up projects such
as the TempEval competitions (Derczynski, 2017)
include annotation for aspect, though typically via
shallow textual cues. More recent work seeks
to automate aspect classification using linguistic
features (Friedrich and Palmer, 2014), discourse
roles (Friedrich et al., 2016), and LSTM-based
models that integrate context (Mostafazadeh et al.,
2016; Laparra et al., 2018).

While effective to some degree, these systems
often operate over flat text or shallow syntac-
tic representations. They do not handle the rich
predicate-argument structures or graph-based se-
mantics found in UMR or AMR. Moreover, they
treat aspect as a downstream feature, rather than an
integral part of event structure representation.

Efforts to include aspect in AMR were initi-
ated by Donatelli et al. (2018), but aspect is not
part of AMR’s core schema. On the other hand,
UMR incorporates aspect explicitly into its anno-
tation guidelines, enabling more structured reason-
ing about events across languages. This is part of
a broader effort to develop UMR into a multilin-
gual semantic representation system, as outlined
by Van Gysel et al. (2021).

This paper is concerned with the aspect annota-
tion of English sentences. Per Van Gysel et al.

(2021), the aspectual categories chosen for En-
glish annotation include a set of base-level dis-
tinctions—Performance, Endeavor, Activity, State,
and Habitual—and a more coarse-grained value for
event nominals amongst other more coarse grained
events—Process.

2.2 Automating Annotation for UMR

Due to the small amount of available UMR data,
prior work has focused primarily on methods for
generating UMR graphs without training. Chun
and Xue (2024) propose a multi-step strategy for
converting AMR graphs into UMR graphs by using
a variety of existing automation tools, such as by
using a modal dependency parser. Similarly, Sun
et al. (2024) experiment with few-shot and Think-
Aloud prompting on LLMs to generate Chinese
UMR graphs without AMR data as input. While
these approaches produce positive results, we find
in our investigations that training is necessary for
further improvement.

Our task is primarily influenced by AU-
TOASPECT, a rules-based approach specifically
for classifying UMR aspects in English UMR
graphs (Chen et al., 2021b). These rules can in-
corporate contextual information around the pred-
icate such as auxiliary verbs (e.g. have written
vs. wrote) and completive markers (e.g. wrote the
whole paper vs. wrote the paper) to indicate what
the aspect of the predicate might be. For their ap-
proach, Chen et al. (2021b) develop a structured
set of rules which closely follow the UMR anno-
tation guidelines and decision lattice. Our work
seeks to address the obstacles that AUTOASPECT
encountered with edge-case aspect relations and
with inaccurate event identification.

Semantic Role Labeling (SRL) is the task of
identifying the events and arguments of a given
phrase, essentially defining who did what to whom,
and sometimes how. SRL is a mainstay task of
the NLP world and many tools have been de-
veloped over the years to label a sentence’s se-
mantic roles, especially for English data. This
widespread task led to the creation of the Propo-
sition Bank, a database resource which simplifies
and supports SRL implementations (Kingsbury and
Palmer, 2002; Pradhan et al., 2022). In our graph
network approach that only takes in a sentence as
input, we leverage an SRL tool (which is itself built
on PropBank rolesets) to identify the events and
their associated arguments, in order to aid in aspect



prediction (Gardner et al., 2017).

2.3 Neural Methods

Graph Neural Networks (GNNs) (Defferrard
et al., 2017) are useful for capturing complex
relationships represented as a graph. There are var-
ious kinds of GNNs such as Graph Convolutional
Networks (GCNs) (Kipf and Welling, 2017) and
Graph Attention Networks (GAT's) (Schlichtkrull
et al., 2017) which are useful for NLP tasks. In
Wang et al. (2022), the authors introduce a text
classification framework using GCN called InducT-
GCN, which creates nodes for training documents
and unique words in those documents. Word nodes
are represented using one-hot vectors, while docu-
ment nodes are represented using TF-IDF vectors.

Neurosymbolic approaches are a way to incor-
porate some logical structure into the model, either
by modifying certain layers of the model, such as Li
and Srikumar (2020), or utilizing a teacher-student
framework for distillation of symbolic knowledge
in the model (Hu et al., 2016). Both Li and Sriku-
mar (2020) and Hu et al. (2016) use first order
logic rules as the symbolic knowledge incorpo-
rated in the model. The rules are scored using
t-norms (Bach et al., 2017), which also allow for
the rules to be differentiable. Neurosymbolic ap-
proaches are also helpful in maintaining consis-
tency in the models.Li et al. (2019) utilize logic
rules to regularize the models away from inconsis-
tency.

3 Data

Our dataset is sourced from the soon-to-be-released
UMR 2.0 Dataset which contains roughly 30k
UMR graphs in different stages of conversion from
AMR graphs from Knight et al. (2020) and Bonn
et al. (2020). Due to the lack of UMR aspect data,
we annotate aspect labels for part of the dataset
that has yet to be annotated with aspect. To en-
sure broad coverage for training and evaluation, we
select four corpora in the dataset to annotate:

1. The Little Prince corpus, a set of sentences
from the English translation of The Little
Prince by Antoine de Saint-Expupéry.

2. The Minecraft corpus, a set of dialogues
and corresponding grounding data from
a collaborative structure-building task in
Minecraft (Narayan-Chen et al., 2019).

3. The BOLT DF corpus, which contains
English-language forum posts crawled as part
of the DARPA BOLT project.

4. The Weblog corpus, comprised of weblog and
online news articles.

Table 1 shows the distribution of aspect labels
and inter-annotator agreement across the annotated
corpora as well as the distribution of labels for the
existing dataset. A detailed summary of aspect
label statistics by corpora for the existing dataset
can be found in Appendix A.

3.1 Annotation

Given the complexity of aspect annotation and its
theoretical underpinnings, we determined early on
that all members of the team should develop a
strong understanding of the UMR aspect schema.
Our goal was to ensure that each annotator not
only contributed data but also possessed the lin-
guistic foundation necessary to support modeling
decisions later in the project. To this end, we con-
ducted weekly training sessions throughout the an-
notation phase.

Training materials were primarily drawn from
expert annotator Julia Bonn’s Georgetown tutorials
and supplemented with newly designed resources,
including an accessible slide deck™ summarizing
the UMR guidelines * with added clarifications and
examples. These materials — available in a shared
Google Drive folder* — formed the core of our in-
structional sessions. Each week for several months,
team members presented on different topics from
these materials and discussed example annotations
as a group to clarify issues.

To solidify our understanding, we conducted an
initial practice task in which each team member
annotated up to 50 predicates from the Pear Story
corpus (Bonn et al., 2023). This dataset was se-
lected for its short, visually grounded sentences,
which reduced ambiguity and facilitated discus-
sion. We then held a follow-up session to review
inter-annotator disagreements and recurring errors.

*https://docs.google.com/
presentation/d/1QUANh2LWlgfvp__
ONAJ7K-YEdAbjG7zXmCLfEgqOsfoal/edit?usp=
sharing

https://github.com/umrdnlp/
umr—-guidelines/blob/master/guidelines.md

*https://drive.google.
com/drive/folders/1_
ou3WW4UV7gQHtglMTEbu4T1TbO5xdHt 2usp=
share_link
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Aspect Little Prince Minecraft BOLT DF WB | Existing Labels | Total
State 172 14 101 14 430 731
Habitual 41 0 4 0 52 97
Process 31 0 38 8 o8 135
Activity 15 2 10 3 132 162
Performance 163 43 69 32 317 624
Endeavor 15 0 4 0 16 35
None 158 49 121 7 - 405
Total 595 108 347 134 1,005 2,189
Fleiss’ Kappa 0.78 0.82 0.45 0.40 - -

Table 1: Label Distribution by Corpus and Aspect. We report Fleiss’ Kappa between the two initial annotators and

do not include disagreements in the reported total.

Category Metric Value
State 0.82
Habitual 0.63
Activity 0.52

Accuracy Performance 0.80
Endeavor 0.11
Overall Accuracy 0.74
Perfect Accuracy 0.35

Fl Macro F1 0.49
Weighted Macro F1 ~ 0.76
Fleiss” Kappa 0.55
IAA Gwet’s AC1 0.66

Table 2: Practice Annotation Results: Overall Accuracy
is the ratio of the total number of correct annotations
over the total number of predicates annotated. Perfect
Accuracy is the ratio of predicates that were correctly
annotated by all annotators. No occurrences of Process
aspects were present in the practice set.

Table 2 shows the results from the practice task.
Label-wise accuracy showed that some categories
— such as State and Performance — were more reli-
ably identified, while others like Endeavor and Ha-
bitual were less consistent. These findings guided
a focused error correction session in which we re-
viewed common sources of confusion, such as dis-
tinctions between State vs. Performance and Per-
formance vs. Endeavor. Due to the different num-
ber of annotations each person performed, we also
report Gwet’s AC1 as a measure for inter-annotator
agreement (IAA) since this metric can be calcu-
lated for different numbers of labels. Fleiss’ Kappa
is only calculated for predicates that were labeled
by all annotators. We find moderate to good IAA
for the practice round, motivating the need for ad-

ditional training.

Following the practice round, we moved into
full-scale corpus annotation. Each subcorpus was
assigned to two annotators for independent label-
ing. When disagreements arose, they were resolved
through a tie-breaking process in which a third an-
notator made the final decision. Each numbered
predicate within the AMR graphs was annotated
with one of six UMR aspect labels or marked with
NONE if the node was non-eventive. The NONE
label was frequently used for adjectival or adverbial
concepts, which often receive FrameNet mappings
in AMR but do not participate in eventualities.

In addition to aspect labeling, each graph re-
quired alignment between graph variables and their
corresponding word indices in the sentence. This
alignment step was essential for enabling super-
vised learning over surface forms and graphs. An-
notators manually aligned each node (e.g., s202)
to its referring word span using index pairs (e.g.,
s202: 6-7). Discontinuous spans were repre-
sented using comma-separated index pairs (e.g.,
s95w: 4-4,7-7). Overall, this manual pro-
cess tended to take more time than the actual aspect
annotations themselves.

Once initial annotation and alignment were com-
plete, all sentences with conflicting aspect labels
were routed to a tie-breaker process. A third annota-
tor reviewed the original annotations and sentence
context to make a final determination. Tie-breaking
decisions were recorded in a shared sheet for trans-
parency and consistency.

Throughout the project, the team met regularly
to discuss edge cases, resolve confusion, and re-
fine our shared understanding of the guidelines.
For particularly complex disagreements—such as



differentiating Endeavor from Performance—we
consulted directly with Julia Bonn to align our an-
notations with expert interpretations.

3.2 Neurosymbolic Rules

We analyzed the properties of the alignment labels
and made some generalizations that we are incorpo-
rating as first order rules in the proposed RuleSpect
model. Let us say that our model is able to predict
if an event has: 1. Ended and 2. Completed. Then,
we can make the following rules.

1. If the model predicts an event as Perfor-
mance, then it must also predict that it has
Ended and Completed.

2. If the model predicts an event as Endeavor,
then it must also predict that it has Ended and
Not Completed.

3. If the model predicts an event as Activity, then
it must also predict that it has Not Ended.

The above rules can be expressed in terms of
first-order logic as:

Vn € Performance, n = End A Complete (1)

Vn € Endeavor, n = End A —=Complete  (2)
Vn € Activity, n = —End 3)

Furthermore, our analysis of the predicates also
revealed that certain predicates are more likely to
be certain aspect values. For example, say-01 is
more likely to be Performance, and cannot be
State. Similarly, for certain predicates, we are
keeping track of predicates and are looking to incor-
porate additional rules based on the observations.
Work was previously done with VerbNet (Schuler,
2005), in part by Julia Bonn, to classify the inherent
aspectual qualities of certain classes of verbs.

For instance, the "hunt" verb, and the verbs
within its class, entail an Endeavor aspect because,
unless otherwise specified, the action of hunting
and finding the object of the hunt is incomplete.
This logic extends to many other verbs, but has not
been formalized with the PropBank propositions
that AMR or UMR use. Efforts are currently under-
way to match up these propositions to their possible
aspectual values as an extension of the rules guided
method.

4 Methodology

In this section, we first detail our investigation of
three methods that we use to benchmark our perfor-
mance before presenting our proposed approaches,
RULESPECT and GRAPHSPECT. Our first bench-
mark is a re-implementation of the AUTOASPECT
system to use as a baseline. For our second bench-
mark, we prompt LLMs with a few prompts to
evaluate the performance of models out of the box
and to determine the feasibility of using LL.Ms to
generate noisy data on which to train. For our final
benchmark, we train a simple feed-forward classi-
fier using the contextual embeddings of the surface
verb represented by each predicate.

4.1 Re-Implementing AutoAspect

We attempt to reimplement the AutoAspect rules-
based classifier on our novel set of annotated UMR
graphs, in order to compare its performance against
the neural approaches as a benchmark. However,
due to dependency issues with the semantic parser
used by the original AutoAspect code, we are un-
able to report this benchmark on our dataset, and
instead provide the AutoAspect classifier’s perfor-
mance on the dataset with which it was published,
as a reference for rules-based approaches in gen-
eral. Model details and hyperparameters can be
found in Appendix D.

4.2 Large Language Model Prompting

We prompt several LLMs to evaluate their capabil-
ity for aspect annotation out-of-the-box. By run-
ning this experiment, we both produce a baseline
to compare other methods and investigate the possi-
bility of using LLMs to generate synthetic data for
training. Prior literature demonstrates that noisy
data can be used to train models (Jung et al., 2024)
that outperform the teacher model, meaning that
the results from LLM prompting are useful even if
the approach performs sub-optimally.

Although finding the optimal prompt for our task
is intractable, we try three strategies to gauge the
impact of prompt structure on LLM performance.
Initially, we manually draft a list of short definitions
for each aspect based on the learnings from our an-
notator training session. We then provide the initial
prompt and instruct the model to generate a better
prompt for our task. Finally, we simply provide
the UMR guidelines for aspect ® in their entirety

Sgithub.com/umrdnlp/umr—guidelines/
blob/master/guidelines.md#
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and prompt the model to predict a label using the
rules and examples therein. We test our strategies
on three LLMs: Llama-3.1 8B Instruct (Grattafiori
et al., 2024), GPT-40 (OpenAl et al., 2024), and
DeepSeek V3 (DeepSeek-Al et al., 2025).

We were unable to implement the third strategy
for the Llama model due to its limited context win-
dow, so instead we created several conditional rules
(negation, hypotheticals, commands) based on the
UMR guidelines. Furthermore, we also find that
the Llama model performed significantly worse
when the text of UMR graphs were presented so
for these experiments we only provide the surface
form of the sentence as input. We report the results
for the best performing prompt for evaluation, de-
tails on prompts can be found in Appendix B and
details on cost can be found in Appendix C.

4.3 Feed Forward Classifier

Although our experiments with LLM prompting
produce results that are sufficient for generating
synthetic data, we do not find any useful strate-
gies for further improving our results. Performance
from in-context learning has been shown to vary
drastically based on slight changes to prompt struc-
ture (Lu et al., 2022), and other work suggests
that LL.Ms lack meta-linguistic reasoning capabil-
ity (Bonn et al., 2024). Our second method investi-
gates the ability of LLMs to capture representations
that may be useful for aspect classification based
on the hypothesis that contextual embeddings en-
code a broad range of linguistic phenomena (Arora
et al., 2024).

To evaluate the usefulness of LLM embeddings
out of the box, we pass the natural language sen-
tence to Llama-3.1 8B (Grattafiori et al., 2024) and
select the first output embedding corresponding to
the predicate under consideration. We then train a
simple Feed Forward Network to predict one of the
seven aspect labels using that embedding. If the
contextualized embedding accurately captures the
aspect of each predicate, our model should be able
to classify that aspect with relative accuracy. Addi-
tionally, the results from this method also serve as
a useful benchmark for evaluating the performance
of more complex strategies. Details of the model
implementation can be found in D.

part-3-3-1-Aspect

4.4 RuleSpect

To address our first task, we introduce RULESPECT,
a GNN which takes AMR/UMR graphs as input
and is augmented with neurosymbolic rules for
training. For implementation, we first create a
graph utilizing the UMR graph and BERT-large
embeddings of the sentence. Using the Penman
Library, we parse the UMR graph and extract all
the nodes and edges, creating a directed graph data-
structure where the nodes represents the predicates
in the UMR graph. We then pass the graph data
structure through a linear projection layer, 2 graph
convolutional layers (GCN), and finally a linear
classification layer to predict an aspect label.

As a secondary training objective, the model
predicts additional labels for Completeness and
Termination, which are correlated with the pri-
mary aspect label. Together, these labels form a
structure inference task, producing additional out-
puts that are used to calculate loss functions. The
previously-defined logic rules 1, 2, 3 are also used
to generate the following t-norm rules (Bach et al.,
2017) which are then used to calculate additional
Hinge Loss functions:

ANB=mazx(A+ B - 1,0)
AV B=min(A+ B,1) 4)
~A=1-4

Since this is a multi-task learning approach, the
complete loss function combines the cross-entropy
loss for the Aspect labels, the binary cross-entropy
losses for predicting Completeness and End State
labels, and the t-norm loss for the logic rules:

TotalLoss = CrossEntropyLoss(Aspect)+
BCELoss(Completion) + BCE Loss(End)+
A * RulesLoss

Q)

Where A denotes the weight attributed to each
logic rule. Details of the model implementation
can be found in D.

4.5 GraphSpect

To address our second task, we introduce GRAPH-
SPECT, a GNN which takes SRL graphs processed
from natural language sentences. For implemen-
tation, we propose a pipeline structure that takes
only a sentence as input and returns an aspect label
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Category Method Accuracy Macro F1 =~ Weighted Macro F1

Deterministic ~ AutoAspect* 0.39 0.23 0.40
Llama3.1 8B Instruct 0.15 0.12 0.15

Prompting GPT-40 0.58 0.37 0.55
DeepSeek V3 0.44 0.17 0.34
Classifier* 0.35 0.13 0.23

Neural RuleSpect (w/o Rules)** 0.34 0.21 0.33
RuleSpect™* 0.36 0.23 0.34
GraphSpect™™** 0.16 0.08 0.16

Table 3: Performance Metrics by Method: Prompting on extremely large LLMs outperforms AUTOASPECT and
neural methods can outperform prompting in certain experiments. *These metrics calculated using dataset from
Chen et al. (2021b). **Trained and evaluated using the same 80/20 train-test split with equal distribution of aspect
labels. ***Trained and evaluated using a subset of the **data with uneven label distribution, due to the SRL’s

inability to capture event nominals.

prediction for each event in the sentence, according
to the UMR aspect guidelines. We first produce
contextualized embeddings from the Llama 3.1 8B
model for each token in the input, then match these
embeddings with the event and argument identifi-
cations for that sentence from the AllenNLP SRL
output, in order to create our preprocessed data.

These embeddings with event and argument
structure are passed to a two-layer graph attention
network. Each of the nodes on the first level cor-
responds to one of the 30 predefined potential ar-
guments that can be identified by the SRL step,
including semantic role arguments (e.g. agent, pa-
tient, theme), along with manner arguments which
correspond to verbal modifications (e.g. negation,
reciprocity, causativity) (Carreras and Marquez,
2005). These argument nodes are connected by
unidirectional edges to the single node in the sec-
ond layer, which represents the predicated event.
Edge weights are learned during training, and any
nodes whose arguments are not relevant for a given
predicate are masked during both training and pre-
diction. The output from the second layer of this
graph network is then passed to a feedforward clas-
sifier, from which a softmax function selects the
most likely aspect label for the input sentence.

Due to differences in tokenization from the
Llama model, the SRL, and the annotators of the
data, aligning the SRL data with the embeddings
and the gold data proves extremely challenging and
inconsistent. This inconsistency degrades learning
during training as well as prediction accuracy. De-
tails of the model implementation can be found in
D.

5 Results

Table 3 displays the accuracies and F1-scores (both
Macro and Weighted Macro) across all methods
tested. We report Weighted Macro F1 for our ex-
periments to account for the large imbalance of la-
bel distribution. The metrics for AutoAspect were
calculated using the dataset from its original pa-
per: Chen et al. (2021b). All other methods used
our novel dataset. Each neural method used the
exact same 80/20 train-test split, with aspect labels
distributed equally across the train and test sets.
Detailed results for the performance of Llama-3.1
8B-Instruct by prompt can be found in E.

AutoAspect acted as a deterministic model base-
line for our tests, while our Llama-embeddings-
based feed-forward classifier acted as a neural
model baseline. To this end, prompting on GPT-
40 exceeded both baselines on all three evaluation
metrics, achieving the best results overall. Among
neural models, only our full RuleSpect model im-
proved upon our baseline neural classifier model on
all three metrics, though RuleSpect without rules
still achieved superior F1 scores over the baseline.
None of our neural models achieved superior accu-
racy to the AutoAspect baseline, though RuleSpect
did achieve an equivalent Macro F1 score.

6 Discussion

6.1 AutoAspect

As previously referenced, AutoAspect could not be
reimplemented on our novel set of annotated UMR
graphs; however, we were still able to get perfor-
mance metrics for AutoAspect on the dataset with
which it was published. Though ideally we would



report AutoAspect’s performance on our novel
dataset, this serves as our deterministic aspect-
classification model benchmark. To this end, our
novel methods largely met or exceeded the per-
formance of AutoAspect on its original dataset.
Among our methods, prompting GPT-40 exceeded
AutoAspect’s performance across all three evalua-
tion metrics, while RuleSpect was able to achieve
comparable performance. These results demon-
strate the efficacy of LLM prompting and neural
architectures in making aspect classifications.

6.2 LLM Prompting

Prompt Accuracy (%) Correct Predictions
Prompt 1 23.60% 105/ 445
Prompt 2 29.66% 132 /445
Prompt 3 21.80% 97 /445

Table 4: Llama-3.1 8B-Instruct Performance by Prompt

The irrelevance of changing prompts to the re-
sults obtained suggests that UMR aspect classifi-
cation is an inherently challenging task for LLMs,
likely due to the subtle semantic distinctions re-
quired and the significant class imbalance present
in the dataset. Table 4 shows the performance of
the three prompts for the Llama experiment, which
we discuss below:

Prompt 2 The superior performance (29.7% ac-
curacy) is attributed to Prompt 1’s greater detail,
structured definitions, and explicit rules. Providing
clear criteria for distinguishing ’Endeavor’ from
’Performance’, precise handling of modals (’ State’),
and an improved definition of *Activity’ likely re-
duced ambiguity for the LLM. This correlates di-
rectly with the improved recall for *Activity’ (0.59
vs 0.09 and 0.15) and reasonable performance on
*State’.

Prompt 1 The less detailed definitions and lack
of explicit contrasting rules likely led to more errors
compared to Prompt 1. The tendency to default
to the ’Process’ category (high recall 0.83, low
precision 0.03) suggests the model struggled with
finer distinctions based on this prompt.

Prompt 3 The drop in accuracy is strongly sus-
pected to be caused by introducing the 'NONE’ cat-
egory, which was absent in the gold standard and
likely confused the model. Additionally, the com-
plex conditional rules (negation, hypotheticals),

while potentially useful, might have added noise
or been difficult to apply correctly without more
examples, hindering performance compared to the
clearer, simpler core definitions in Prompt 1. The
highly conservative prediction for ’Performance’
(high precision 0.92, low recall 0.12) might also
stem from this prompt’s structure.

The dataset’s significant imbalance, with the
‘state’ aspect being dominant and many classes
being rare, heavily influenced the results. Perfor-
mance on minority classes was negligible regard-
less of the prompt, indicating that prompt engineer-
ing alone may not overcome severe data sparsity.
Weighted F1 scores were skewed by the majority
class, while low macro F1 scores accurately re-
flected poor performance across most categories.

6.3 LLM Errors and Faulty Reasoning

DeepSeek

Predicted Llama3.1 GPT-4o0 Overall
V3

Aspect

State 0.157 0.425 0.509 0.323
Habitual 0.015 0.039 0.036 0.027

Process 0.089 0.090 0.082 0.087

Activity 0.604 0.046 0.050 0.307

Performance  0.095 0.272 0.290 0.195

Endeavor 0.040 0.083 0.007 0.042

None 0.000 0.041 0.019 0.016

Table 5: Representation of Error Categories by LLM

Sentence: "Good morning," said
the little prince.

Predicate: good-02

Selected aspect: State

Gold aspect:
Justification:
"good-02’ describes a stative
property of ’'morning,’ indicating
a quality or condition without
any change or process involved.
Therefore,
state.

None
The predicate

it is classified as a

Figure 2: Examples of LLM reasoning for selecting the
incorrect aspect value. GPT-4o incorrectly identifying a
‘none’-aspected predicate as ’state.’

During the analysis of erroneous responses by
LLMs to the prompts, several noteworthy trends
were observed. For both GPT-40 and DeepSeek,
the largest category of errors were misidentifica-



Sentence: They attacked swiftly
and fearlessly and coordinated
with tacit understanding, but
looking back at the Chinese
women’s soccer team it was in

an inferior position either in
time-control or coordination.
Predicate: attack-01

Selected aspect: Activity

Gold aspect: Performance
Justification: This sentence is
talking about a military attack,
and the action of attacking is
ongoing and not completed within
the time frame of the sentence.
Therefore, the aspect value 1is
"activity".

Figure 3: Examples of LLM reasoning for selecting the
incorrect aspect value. Llama3.1 incorrectly identifying
a “performance’-aspected predicate as ’activity.’

tions of the aspect value as ’state’ (42.5% for GPT-
40, 50.9% for DeepSeek). 'Performance’ was the
second-most overidentified value by both models
(27.2% for GPT-40, 29.0% for DeepSeek). This
result largely aligns with the fact that the data con-
tained a large number of both ’state’ and ’perfor-
mance’ aspect labels, incentivizing the models to
assign these labels to predicates even when a differ-
ent label should have been applied. However, errors
committed by Llama3.1 8B Instruct were mostly
false labelings of ’activity’ (60.4%), which had a
much smaller share in other models’ errors. Table
5 provides percentages of each falsely identified
aspect over all errors in labeling for each model.

Most over-identifications of ’state’ were for pred-
icates that should have had a "none’ aspect value
(88.8% for GPT-40, 92.6% for DeepSeek). Simi-
larly, a large portion of over-identifications of "per-
formance’ were for predicates labeled 'none’ in the
gold set (29.9% for GPT-40, 30.8% for DeepSeek),
as well as "process’ (23.4% for GPT-40, 26.0% for
DeepSeek) and ’state’ (22.1% for GPT-40, 16.6%
for DeepSeek). In the case of Llama-3.1, most "ac-
tivity’ labels were for predicates that should have
been identified as 'none’ (33.9%), ’performance’
(33.1%), or ’state’ (17.9%).

Figures 2 and 3 depict two examples of LLM
reasoning when making some of the most promi-
nent types of errors for the respective model. As
shown in Figure 2, GPT-40 had some trouble rec-

ognizing differences between a stative event and a
non-eventive predicate, such as *good-02’ in this
example. Llama3.1, on the other hand, seemed to
over-identify events as ongoing or incomplete (Fig-
ure 3), perhaps in an attempt to exercise caution in
stating definitely that an event has ended or would
have ended had it occurred, hence the large number
of false "activity’ labels.

6.4 Classifier

Performing simple classification using Llama em-
beddings resulted in middling performance, com-
ing short in all three evaluation metrics when com-
pared to AutoAspect and most LLM prompting
methods. Although LLM embeddings have been
seen to capture significant semantic information,
these results demonstrate that LLM embeddings
alone are insufficient for capturing aspect informa-
tion.

6.5 RuleSpect

For RuleSpect, we have 2 approaches, one without
the rules and the other with the rules. We can see
that both were unable to beat the results we get
from prompting. There are several reasons which
also suggests a lot of scope future improvements:

1. The graph nodes are created from BERT-large
embeddings, which are quite small as com-
pared to the Llama embeddings.

2. We should also revisit the annotations, be-
cause any mistakes in predicting the comple-
tion and result labels would also sway the
model in an incorrect direction.

3. The training data is also not uniformly dis-
tributed in terms of the aspect labels, we can
expect that out of Performance, Endeavor,
and Activity, the model would have strong
preference to select Performance as it has seen
this the most. Perhaps we can improve the
rules to account for this.

Comparing RuleSpect with rules and without
rules, we can see that the rules do have some minor
performance benefits.

6.6 GraphSpect

Overall, GraphSpect, our combined SRL/GNN
model, was unable to meet the benchmark evalua-
tion metrics on the test set. GraphSpect falls short



of the AutoAspect benchmark, our embeddings-
based classifier benchmark, and all LLM prompt-
ing methods (except for Llama) on all three of our
evaluation metrics.

One limitation of GraphSpect that contributed to
these lower evaluation metrics is that the AllenNLP
SRL tool does not identify event nominals, which
largely fall under the "Process’ aspect label. There-
fore, no examples of ’Process’ were able to be
correctly identified in the test set, reducing the re-
call and accuracy metrics. Moreover, the SRL does
not identify any of the verbs which have a "none’
aspect label. Although this is correct from an event-
identification perspective (because any predicate
with a "none’ aspect label in the gold annotation
is by definition non-eventive), it also reduces the
reported metrics of the model by making it impossi-
ble for GraphSpect to report any recall or accuracy
for the 'none’ class.

Additionally hindering the performance of
GraphSpect is the inconsistency in tokenization
and event identification between the SRL tool, the
Llama tokenizer, and our gold annotators. The SRL
tool and the Llama tokenizer produce differences
in subword tokenization and punctuation handling
which are difficult to account for when formatting
inputs for the GNN. Furthermore, the SRL tool and
the Llama tokenizer often do not identify the same
predicates/events as are present in the Gold Data,
resulting in many missed classifications.

Though we hypothesized that Semantic Role La-
beling combined with a Graph Neural Network
could improve aspect classification, this architec-
ture was unable to capture the complexities of as-
pectual distinctions within the data. The under-
whelming performance of GraphSpect suggests
that the use of Semantic Role Labeling did not
improve model understanding of predicate aspect.
Furthermore, the complex mix of pre-existing tools
and embeddings made this implementation espe-
cially difficult and hindered overall performance.

7 Conclusion and Future Work

In this paper, we introduce two tasks for anno-
tating UMR aspect labels, the first using exist-
ing AMR or UMR graphs and the second using
only the surface sentences. For each task, we re-
spectively present RULESPECT, a neurosymbolic
GNN that uses logic-rules for training, and GRAPH-
SPECT, a GNN that accepts SRL graphs parsed
from the surface sentence only. As a baseline, we

compare our models using an existing rules-based
approach, LLM prompting, and a simple feed for-
ward classifier as benchmarks. We find that while
neurosymbolic approaches show promise, LLMs
are currently the best performing strategy for this
task. Regardless, the overall performance of the
surveyed methods have room for improvement and
are not yet ready to be used for creating UMR an-
notations.

For future work, we believe that a larger dataset
needs to be created for training to become an ef-
fective strategy. We suggest that LLM prompting
should be used for synthetic data generation, which
would sharply reduce the cost of creating training
data. Due to the inherent complexity and disagree-
ment that arises from aspect annotation, noisy train-
ing data would not necessarily impact the ability for
models to learn better representations. Secondly,
we believe that the current iterations of our models
have a lot of room for improvement. For RULE-
SPECT, a larger LLM can be used for generating
embeddings and more logic rules can be derived
from the UMR guidelines. For GRAPHSPECT, we
can consider alternatives to SRL such as by using
dependency parsing, which could provide better
alignment with the LLM tokenizer. Finally, we
should take into account the impact of corpus dis-
tribution in the training data. Style and structure
vary greatly between corpora, which could impact
our training results.
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A Aspect Label Distribution from
Existing UMR Data

B LLM Prompts

Listing 1: Prompt template used in Experiment 2.

You are an expert annotator of aspect
under the Uniform Meaning
Representation (UMR) framework.
Aspect is a single variable in a UMR

graph that needs to be annotated
for every predicate in a given
sentence. For this task, it can take
on six different wvalues:

1) State: no change takes place over the

course of the event. This includes
stative verbs such as "be," "want,"
"love," but also ability modals ("
can"/"could"/"be able to"),
perception verbs ("see," "feel," "
hear"), and other verbs describing
conditions rather than an active
event.

2) Habitual: this label is for events
that happen repeatedly. In English,
this usually correlates with the
present simple tense, but also with
"used to" or "would" when the
habitual event is in the past tense.

3) Process: a superset of Activity,
Endeavor, and Performance. The
Process tag is reserved for ongoing
events with uncertain or unspecified

beginning or endedness. It is
typical for events expressed as
nouns, such as "wrongdoing" or "
creation," unless context is
provided on whether the event has
ended or the span of the event.

4) Activity: a type of process that
clearly does not start or end within
the time window of the predicate.
This includes both cases where the
processive event is ongoing, e.g.,
in "He is still writing his paper,"

but also cases where there is no
evidence that the event has ended,
as in "He was writing his paper
yesterday" or "He started playing
the violin."

5) Endeavor: a type of process that ends

within the time window of the
predicate but does not reach a
particular end state. Some evidence
for the "Endeavor" aspect label: 1)
terminative aspectual marking, e.g.,

"stop" as in "Mary stopped mowing
the lawn" 2) durative adverbials, e.
g., "for a long time," "all summer"
3) non-result path, e.g., "through
the valley," "along the beach" (
motion or attempt to change without
a clear result or destination)

6) Performance: a type of process that
reaches a result state. It covers
achievements (instantaneous binary
change) and accomplishments (process

before and up to the moment the
change happens). Some evidence for
the "Performance" aspect label as

opposed to "Endeavor": 1) completive
aspectual marker, e.g., "finished"
as opposed to "stopped" 2) container

adverbial, e.g., "in thirty minutes

" as opposed to "for thirty minutes
n

Your task is to determine the aspect
value for a specific predicate in a
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Aspect Little Prince  Minecraft BOLT DF WB Pear Story Lorelei UMR 1.0 Total
State 63 20 119 45 121 0 62 430
Habitual 1 0 17 4 28 0 52
Process 0 ) ) 44 1 1 58
Activity 9 0 31 14 57 0 21 132
Performance 35 2 43 18 159 3 57 317
Endeavor 0 0 0 0 2 0 14 16
Total 110 22 215 86 411 4 157 1005
Table 6: Aspect Label Distribution from Existing UMR Data
UMR graph for a given sentence. Deduction: "must be," "can’t be" (e.g.,
"She must be the new teacher")
Sentence: "{sentence}"
All ability modals ("can," "could," "be
The predicate you need to analyze is: "{ able to") are always annotated as
predicate}" with variable name: "{ state aspect, regardless of the

variable_name}"

You need to determine the aspect value
for this predicate. The aspect value
must be one of the following 6

action they modify.

2) Habitual:
that happen repeatedly.

this label is for events
In English,

values: this usually correlates with the
1) state present simple tense, but also with
2) habitual "used to" or "would" when the
3) process habitual event is in the past tense.
4) activity
5) endeavor 3) Process: a superset of Activity,
6) performance Endeavor, and Performance. The

The aspect value of the predicate "{
predicate}" under the variable {
variable_name} is:

Listing 2: Prompt template used in Experiment 2.

Aspect 1s a grammatical category that

Process tag is reserved for ongoing
events with uncertain or unspecified
beginning or endedness. It is
typical for events expressed as
nouns, such as "wrongdoing" or "
creation," unless context is
provided on whether the event has
ended or the span of the event.

4) Activity: A type of process that
doesn’t start or end within the

expresses how a verbal action, event predicate’s time window. This

, or state extends over time, it is includes ongoing processes ("He is
a single value that is annotated for still writing his paper") and cases
every event. For this task, aspect with no evidence of ending ("He was

can take on six different values:

1) State:
course of the event.
stative verbs ("be," "want," "love")
, perception verbs ("see," "feel," "
hear"), all modal verbs, and events
under the scope of ability modals.
Examples of modal verbs include
those expressing:

No change takes place over the
This includes

Ability: "can," "could," "be able to" (e
.g., "She can speak five languages")

writing his paper yesterday").
Events in present tense are
typically activities. Activities can
be further classified as:

i) Directed activity: Change occurs
gradually along a qualitative scale
(e.g., "The soup was cooling")

ii) Undirected activity: Change doesn’t
progress incrementally (e.g., "The
cat was meowing")

The activity label applies when there’s

Possibility: "may," "might" (e.g., "It no evidence the event has ended,
may rain later") whether clearly ongoing or ambiguous
Necessity: "must," "has to" (e.g., "You about continuation, often depending
must wear a seatbelt") on context and real-world knowledge
Permission: "may," "can" (e.g., "You may
leave early")
Obligation: "must," "should" (e.g., "You 5) Endeavor: a type of process that ends

should apologize")



within the time window of the
predicate but does not reach a
particular end state. Some evidence
for the "Endeavor" aspect label: 1)
terminative aspectual marking, e.g.,

"stop" as in "Mary stopped mowing
the lawn" 2) durative adverbials, e.
g., "for a long time," "all summer"
3) non-result path, e.g., "through
the valley," "along the beach" (
motion or attempt to change without
a clear result or destination)

6) Performance: a type of process that
reaches a result state. It covers
achievements (instantaneous binary
change) and accomplishments (process

before and up to the moment the
change happens). Some evidence for
the "Performance" aspect label as
opposed to "Endeavor": 1) completive
aspectual marker, e.g., "finished"
as opposed to "stopped" 2) container
adverbial, e.g., "in thirty minutes

" as opposed to "for thirty minutes
"

The markers that indicate "endeavor"
versus "performance" aspects:

Durative adverbials (indicating duration
like "for a long time," "all summer
") suggest Endeavor
Container adverbials (time periods that
contain events like "in the morning

," "during class") suggest
Performance

Terminative aspectual markers ("stop," "
cease," "quit") suggest Endeavor

Non-result paths (motion without
reaching endpoints like "through the
valley," "along the beach") suggest
Endeavor

Completive aspectual markers ("finished
," "had eaten," "ran in under four
hours") suggest Performance

Your task is to determine the aspect
value for a specific predicate in a
given sentence.

Sentence: "{sentence}"

The predicate you need to analyze is: "{
predicate}" with variable name: "{
variable_name}l"

You need to determine the aspect value
for this predicate in that sentence.
The aspect value must be one of the
following 6 values:

state

habitual

process

activity

endeavor

performance

oY U b W N

The aspect value of the predicate "{
predicate}" under the variable {

variable_name} is:

Listing 3: Prompt template used in Experiment 2.

Your task is to determine the aspect
value for a specific predicate in a
given sentence, based on UMR aspect
annotation guidelines. Aspect
expresses how a verbal action, event
, or state extends over time.

Analyze the predicate within the context
of the sentence and assign one of
the following seven aspect values:

1) State: No change takes place.
Includes stative verbs (be, want,
love), perception verbs (see, feel),

modal verbs (can, must, should, may
, etc.), and inactive actions (sit,
lie, think). Rule: Ability modals (
can, could, be able to) are always ’
State’ .

2) Habitual: Event happens repeatedly
or usually. Often indicated by
present simple tense, or phrases
like "used to", "often", "every year

3) Process: An ongoing event where the
beginning or end is uncertain or
unspecified. Rule: Often the default

for events expressed as nouns (
nominals like "wrongdoing", "
creation") unless context suggests
otherwise.

4) Activity: A process that clearly
does not start or end within the
predicate’s time window. Includes
ongoing processes (e.g., progressive

tense "is writing", "was writing")
or cases with no evidence of ending.

5) Endeavor: A process that ends within
the time window but does not reach

a specific result state. Often
indicated by terminative markers ("
stop"), durative adverbials ("for
two hours"), or non-result paths ("
walk along the beach").

6) Performance: A process that ends and
reaches a result state (an endpoint
or change). Covers achievements (

instantaneous change, "shatter", "
arrive") and accomplishments (
durative process leading to change,
"build a house", "write a book").
Indicated by completive markers ("
finished") or container adverbials
("in thirty minutes").

7) NONE: Use this if the predicate is
not eventive (e.g., adjectives,
structural elements, some epistemic
modals) or doesn’t have a clear
aspect.

Additional Rules & Guidelines:



Prioritize: Aim for more specific
distinctions like ’Activity’, '
Endeavor’, or ’"Performance’ before
defaulting to the general ’Process’

category.

Negation: If an event is negated (e.g.,

"did not go"), analyze the aspect
as 1f the event did happen.

Hypotheticals: If the event is
hypothetical ("If he went..."),
analyze the aspect by pretending
the event is real.

Commands: For commands ("Go!", "Be
happy!"), use the canonical
interpretation of the event’s

aspect (’'Performance’ for "Go", '
State’ for "Be happy") .

Input:

Sentence: "{sentence}"

Predicate to analyze: "{predicate}l" (
Variable: "{variable_name}")

Task:

Determine the single aspect value for
the predicate "{predicate}" ({
variable_name}) in the given
sentence.

Output:

Provide only the aspect value word (

state, habitual, process, activity,
endeavor, performance, or NONE) .
Aspect:

C LLM Prompting Costs

The cost to run the experiment of all three prompts
on the GPT-40 model was $15.56. The DeepSeek
V3 model cost $1.20 for the same set of exper-
iments. The prompting experiments using the
Llama-3.1 8B Instruct model required 49 minutes
of compute runtime, and it was accessed using the
Transformers library through Hugging Face.

D Neural Model Details and
Hyperparameters

The Feed Forward Classifier uses 4 feed forward
layers of dimension (4096 x 1024), (1024 x 512),
(512 x 256), and (256 x 7) respectively. We used
a learning rate of 0.01 and a batch size of 16 to
train for 1000 epochs, although peak metrics were
achieved within the first 10 epochs. Running CPU,
the model took roughly 20 minutes to train.

For RULESPECT, the optimal weights for the

loss function were A1 = 0.5 and Ay = 0.5, mean-
ing that an equal weighting was given to the binary
cross-entropy loss for the Completeness and End
State label predictions as well as to the hinge loss
for the logic rules. The implementation for RULE-
SPECT without rules had both lambdas set to 0. In
either case, we used a learning rate of 0.001 and
train for 1000 epochs on a Google Colab GPU,
which took on average 84 minutes per implementa-
tion.

For GRAPHSPECT, we trained using a learning
rate of 0.001 for 300 epochs on a local GPU, which
took roughly an hour.

E Classification Metrics Summary

F AutoAspect Dataset Statistics

Table 8 reports the performance metrics for the
two main tasks of AutoAspect, namely the cor-
rect identification of events (both predicative events
and event nominals), and the aspect label predic-
tion for all identified events. The authors note
that recall is the only representative metric for the
event identification task, because precision (and
thus F1) would penalize the classifier’s identifica-
tion of events which were not identified in the gold
data; the authors sought to avoid this because of the
ambiguity in the annotation guidelines and the in-
consistency of event identification even by human
annotators.

G Detailed Metrics by Aspect for All
Experiments



Prompt 1 Prompt 2 Prompt 3

Aspect P R F1 P R F1 P R F1
State 0.85 032 047 0.77 034 047 081 0.28 041
Activity 021 0.09 0.13 0.14 059 023 026 0.15 0.19
Performance  0.83 0.10 0.18 035 0.16 022 092 0.12 0.22
Process 0.03 0.83 0.06 0.00 0.00 0.00 0.03 0.75 0.06
Macro Avg 0.19 0.14 0.08 0.14 0.11 0.10 0.20 0.13 0.09
Weighted Avg 0.68 024 032 053 030 034 0.68 022 0.30
Accuracy 0.2360 0.2966 0.2180

Table 7: Detailed Classification Metrics Summary for Llama. Performance on minority classes (e.g., ’directed-
achievement’, ’generic’, "habitual’) was negligible (often 0.00 F1-score) across all experiments and is omitted from

the table for brevity.

Task Recall Accuracy
Event Identification 76.17 n/a
Event Aspect Prediction  n/a 62.57

Table 8: AutoAspect Event Identification and Aspect Prediction Performance

Prompting Neural
Aspect é‘;;ﬁ:iﬁct GPT-40 egepSeek Classifier f;u/l(fiﬁzts) RuleSpect ~ GraphSpect
State 0.44 0.77 0.68 0.95 0.14 0.11 0.14
Habitual 0.09 0.21 0.96 0.00 0.38 0.38 0.00
Process 0.02 0.11 0.90 0.00 0.22 0.12 0.00
Activity 0.60 0.23 0.96 0.00 0.00 0.00 0.00
Performance 0.09 0.84 0.79 0.09 0.41 0.39 0.23
Endeavor  0.06 0.17 0.98 0.00 0.05 0.05 0.00
None 0.00 0.24 0.66 0.00 0.42 0.42 0.17
Overall 0.15 0.58 0.44 0.35 0.36 0.34 0.16

Table 9: Accuracy of Prompting and Neural Methods by Aspect Label



