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Abstract

While large language models offer impressive performance, flexibility, and ease-
of-use via natural language interaction, slight variation in the wording of prompts
can have significant impacts on model performance. To sidestep this problem,
we propose CONEM, a prompt tuning–like framework for learning non-linguistic
representations of general concepts. We use CONEM to train a variety of GPT-2–
compatible concept embeddings across multiple datasets, and evaluate their utility
on a generative classification task. We find that while GPT-2–based CONEM does
not produce consistently better results than similar natural language methods, the
method shows significant promise, and is worth pursuing further.

1 Introduction

Large language models (LLMs) excel at tasks mapping natural language input to natural language
output [5, 19], and demonstrate remarkable flexibility via prompting them for specific behaviors
across varying tasks [2, 16, 17]. However, these models are also very sensitive to variations in
the wording of prompts that may seem inconsequential to human users [9], and ideal linguistic
representations are often non-obvious.

A possible alternative to experimentally tweaking prompts until finding natural language repre-
sentations that maximize performance is to instead learn ideal representations directly. Such
representations need not be linguistically meaningful, and could instead be non-linguistic represenata-
tions tuned to perform optimally on a specific language model. Prompt tuning [18] may be seen as a
form of this, but the symbols learned by prompt tuning are not representations; i.e. they do not carry
meaning, and are not intended to. Meaningful symbols could offer the performance-maximizing
benefits of prompt tuning, while still retaining the flexibility and generalizability of natural language
prompting. 1

To this end, we propose CONEM, a method for learning concept embeddings that represent concepts
captured by a pretrained language model without being tied to any specific linguistic representation
of those concepts. As shown in 1, we use CONEM to train an inventory of concept embeddings and
experiment with using these embeddings as inputs for contextualized generative classification [6]. We
find that the method generally works well, albeit with some performance inconsistency. We conclude
that CONEM needs additional work to fully establish its viability, but is nonetheless worth further
pursuing.

An added benefit of learning concept embeddings is the ability to investigate the model’s parameter
space in relation to the learned embeddings. As an initial experiment, we probe our fine-tuned model
in order to determine whether or not the original concepts can be recovered. Our probe is a linear
classifier that accepts the hidden state of the model at each layer and is trained to predict the original
concept embedding(s). We find that certain concepts are more retrievable than others, highlighting
potential weaknesses in the current implementation of our method.
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Figure 1: CONEM training setup. Training objective is to generate output texts given contextualizing
concept embeddings as input.

2 Related Work

Prompt Sensitivity Lu et al. [9] present the key motivation for our work by demonstrating the large
variance of model outputs caused by sensitivity to differing linguistic representations. Specifically,
they demonstrate that regardless of model size or number of examples, models are always sensitive
to the structure of prompts and the order of examples provided. Moreover, "performant" prompts
(i.e. prompts that produce ideal results on a given task) are not transferrable across models, which is
problematic when new models are trained or fine-tuned. Their solution is to construct a probing set
by sampling the language model to discover the performant prompt structure using an entropy-based
probing strategy.

Our approach is fundamentally orthogonal to this strategy and side-steps the prompt instability
problem entirely. Instead of authoring human-readable prompts that must then be experimentally
investigated on a per-model basis, we combine prompt construction and evaluation into a single
process by learning ideal representations directly.

Mutual Information Similar to Lu et al. [9], the approach presented in Sorensen et al. [15] also
samples several prompting formats to discover a performant format for a given task. Instead of a
probing set, they develop a mutual information metric that measures the shared information between
prompts and outputs for a given model which they demonstrate empirically achieves near-maximal
performance on several datasets. Their proposed metric can be calculated without ground truth labels,
which means no training set sampling is needed. Since this method also identifies ideal prompt
structures for models and tasks, our approach also differs by our use of generative classification.

Answer Choice Bias Another key motivation for our work is presented by Zhao et al. [22], who
demonstrate that language models are biased to certain answer choices due to three types of model
bias. Models are biased to select the majority label in few-shot examples given in the prompt (majority
bias), the answer choice of examples given towards the end of the prompt (recency bias), or choices
that contain tokens more common in the pre-training dataset (common token bias). They improve
prompt performance through contextual calibration, which balances prompt examples based on these
biases. The model is first prompted with a context-free input such the string "N/A" to measure biases.
The biases are then used to find the optimal training examples and ordering that should be provided
in the prompt. This approach is generalizable across generation tasks (tested on classification, fact
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retrieval, and information extraction), but still relies on prompting and differs from our approach on
this front.

Prompt Tuning Our CONEM method is inspired by prompt tuning [7], which introduces the idea
of adding special tokens to a frozen language model to fine tune a given task. Instead of fine-tuning
model parameters to a given task, prompt tuning trains special token embeddings that effectively add
a small number of task-specific parameters to an existing model. By training only those embeddings
on a target task (e.g. text classification), the prompt tokens learn the desired output for that task
without changing the rest of the model.

CONEM may be conceptualized as a modular approach to prompt tuning, where instead of learning a
monolithic prompt with no semantic meaning, we learn semantically-meaningful prompt elements
that may be composed to represent complex meaning for different tasks. While the symbols learned
in prompt tuning are specific to a particular task, the concept embeddings learned through CONEM, if
well-trained, should ideally be reusable across tasks and domains, allowing the construction of novel
CONEM prompts for new scenarios.

Causal Interpretability Recent work on model probing [1, 3, 14, 8] has shown remarkable progress
on interpreting specific features of large neural networks. The general strategy used in this line of
investigation is to hypothesize a feature in the model based on observed behavior, design a probing
task for that feature, and test the hypothesis by probing the hidden layers of the model. While probes
can be complex, Nanda et al. [11] demonstrate that features can sometimes be discovered using linear
probes. We follow this approach by first passing as input some concept embeddings along with noisy
text and applying a linear probe on the outputs of each hidden layer to classify which concept(s) were
present in the input.

3 Methodology

3.1 Generative Classification

Type Concept Embeddings

DOCTYPE
REVIEW
NEWS

DOMAIN

FILM
CONSUMER_BUSINESS
CONSUMER_PRODUCTS

FINANCE
ECONOMICS

ORIGIN

ROTTEN_TOMATOES
YELP

AMAZON
TWITTER

MAINSTREAM_NEWS

SENTIMENT
POSITIVE
NEUTRAL
NEGATIVE

Table 1: Inventory of concept embeddings by type,
as motivated by available information about cho-
sen datasets (see Section 3.2) and the downstream
sentiment classification task (see Section 3.1).

Generative classification [10] is an approach that
accurately samples the probability space of pre-
trained generative language models by using the
label as input to predict the text under consid-
eration. The standard discriminative classifica-
tion task uses a model that predicts the label ŷ
using the text under consideration x by calculat-
ing ŷ = argmaxyi∈Y p(yi|x). Assuming equal
prior probabilities of labels, this probability can
be rewritten as ŷ = argmaxyi

p(x|yi) which is
the generative classification approach [6].

Contextualized generative classification extends
this approach by providing as input not only a
candidate class label, but also contextual infor-
mation about the text. Kumar et al. [6] achieved
good results providing labels and context in the
form of full sentences (e.g. "This is a positive
movie review from the website Rotten Toma-
toes."), and their approach forms the basis of
our own.

The goal of this work is to learn embedded con-
cept representations that are not tied to any par-
ticular linguistic expression of the concept. We
accomplish this through CONEM, a novel learn-
ing method inspired by prompt tuning.

First, we choose an inventory of concepts. In our case, we chose concepts based on what readily-
identifiable contexts were captured by our chosen datasets (see Section 3.2 and Table 2). We
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Associated Concept Embeddings

Dataset DOCTYPE DOMAIN ORIGIN SENTIMENT

Movie Reviews REVIEW FILM ROTTEN_TOMATOES
POSITIVE
NEGATIVE

Yelp Reviews REVIEW CONSUMER_BUSINESS YELP
POSITIVE
NEGATIVE

Amazon Reviews REVIEW CONSUMER_PRODUCTS AMAZON

POSITIVE
POSITIVE+NEUTRAL

NEUTRAL
NEGATIVE+NEUTRAL

NEGATIVE

General Tweets — — TWITTER
POSITIVE
NEGATIVE

Finance Tweets NEWS FINANCE TWITTER
POSITIVE
NEUTRAL
NEGATIVE

Econ News NEWS ECONOMICS MAINSTREAM_NEWS
POSITIVE
NEGATIVE

Bitcoin Tweets† NEWS FINANCE TWITTER
POSITIVE
NEUTRAL
NEGATIVE

Table 2: Datasets and associated contextualizing concept embeddings. †This dataset was held out
from the Combined CONEM setting; see Section 4.1.

also assigned each concept embedding a type, allowing us to easily templatize prompts based on
typed slots, e.g. always structuring a prompt as [doctype][domain][origin][sentiment]. We believe
this makes prompts more directly comparable for our generative classification evaluation task (see
Section 3.1).

Second, we add special tokens representing each of these concepts to our chosen model’s tokenizer,
as well as a special concept embedding layer with entries for each of these tokens to the model itself.
This allows each concept embedding to have a corresponding human-convenient text representa-
tion for prompt construction. We structured these text representations as <[type]:[concept]>, e.g.
<SENTIMENT: POSITIVE> or <DOCTYPE: NEWS>.

Third, we associate each document in our training corpus with a set of concepts that represent the
identifiable context of that document. For example, a negatively-sentimented movie review from
Rotten Tomatoes would be associated with {<SENTIMENT: NEGATIVE>, <DOMAIN: FILM>,
<DOCTYPE: REVIEW>, <ORIGIN: ROTTEN_TOMATOES>}. If some aspect of a document’s
context is not known, or is known but does not have an associated concept embedding, that aspect of
the context is ignored.

Fourth, we train the concept embeddings on a text generation task, in which the model inputs
are contextualizing concept embeddings—as assigned in the third step and ordered per the prompt
template structure chosen in the first step—and the model outputs are the corresponding contextualized
documents. The training objective is to minimize the cross-entroy loss between the predicted output
and the actual document.

Unlike in many training setups, our setup will usually have numerous different output documents
corresponding to a single possible input, as many documents in a corpus will share the same context. It
is important to note that we are not attempting to train embeddings that will actually recover document
text given contextualizing concept embeddings, but rather to capture a general representation of a
concept by distilling information from numerous texts that represent that concept in linguistically
diverse ways. While this differs from usual language model representation learning when considered
at the level of an entire prompt, it is not too different from such representation learning when
considered at the level of individual embeddings. Typical LM representation learning tries to learn a
general representation of a particular linguistic token given numerous documents that capture the
meaning of that token, differing from our system primarily in that we are learning representations of
explicitly non-linguistic tokens.
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3.2 Datasets and Concept Embedding Inventory

Datasets were chosen such that example texts would be contextualized by some overlapping concepts
and some disjoint concepts, allowing us to experiment with the interaction between CONEM and
mutual information. All datasets are annotated for sentiment classification tasks. Datasets are:

• Movie Reviews: 2-class sentiment classification of movie reviews retrieved from Rotten
Tomatoes [12].

• Yelp Reviews: 2-class sentiment classification of customer reviews retrieved from Yelp
[20].

• Amazon Reviews: 5-class sentiment classification of product reviews retrieved from Ama-
zon [21].

• General Tweets: 2-class sentiment classification of Tweets covering no specific topic [4].
• Finance Tweets: 3-class sentiment classification of Tweets discussing financial news1.
• Econ News: 2-class sentiment classification of English-language Sri Lankan economic

news2.
• Bitcoin Tweets: 3-class sentiment classification of Tweets discussing Bitcoin3.

Concepts to embed were chosen based on the properties of example texts that may be known a priori.
Some properties may be known via the annotations on each example, such as the sentiment of the
text in datasets annotated for sentiment classification. Other properties may be known because they
are inherent to every text in a dataset: e.g. given a dataset of Finance Tweets, we may be confident
that each document is in the domain of finance (<DOMAIN: FINANCE>) and originated on Twitter
(<ORIGIN: TWITTER>). Our overall inventory of concepts is detailed in Table 1, and a breakdown
of which concepts contextualize which datasets is detailed in Table 2.

Note that for the SENTIMENT concept embedding type, we train concept embeddings for only
POSITIVE, NEUTRAL, and NEGATIVE. For 5-class sentiment classification tasks, the "some-
what positive" label is represented with the concatenation of <SENTIMENT: POSITIVE> and
<SENTIMENT: NEUTRAL>, and the "somewhat negative" label is represented with the concatena-
tion of <SENTIMENT: NEGATIVE> and <SENTIMENT: NEUTRAL>. This allows us to test the
composability of concept embeddings within a single type.

4 Experiment Design

4.1 Evaluating Concept Embeddings

We use our CONEM method to train concept embeddings across a variety of datasets, training concept
embeddings both from single datasets and from a combination of multiple datasets. We evaluate
these concept embeddings’ usefulness as input for a contextualized generative classification task,
on both the test portions of our training datasets and an additional dataset that was withheld from
training to test the generalizability of CONEM-trained embeddings. The language model used in all
experiments was GPT-2 [13].

Experiments To perform contextualized generative classification with CONEM, we pro-
vide candidate labels and context as input in the form of representative concept embed-
dings, e.g. ‘<DOCTYPE: REVIEW> <DOMAIN: FILM> <ORIGIN: ROTTEN_TOMATOES>
<SENTIMENT: POSITIVE>’. We perform a single inference per candidate label, and select the
highest scoring label (i.e. the label whose corresponding input is most likely to produce the example
text as output) as the prediction.

For all but the Bitcoin Tweets dataset, we compare CONEM contextualized generative classification
in two settings. In the first (the "Separate" setting), we use concept embeddings trained only on the

1https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
2https://huggingface.co/datasets/dilkasithari-IT/sentiment_analysis_

financial_news_data
3https://huggingface.co/datasets/ckandemir/bitcoin_tweets_sentiment_

kaggle
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Method
Dataset Natural language / GEN-Z CONEM, Separate CONEM, Combined

Movie Reviews 0.415 0.254 0.333
Yelp Reviews 0.625 0.862 0.338

Amazon Reviews 0.067 0.281 0.069
General Tweets 0.727 0.672 0.454
Finance Tweets 0.085* 0.540 0.192

Econ News 0.429* 0.657 0.437
Bitcoin Tweets† 0.342* — 0.262

Table 4: Experimental results. Macro-averaged F1 scores for classification. †This dataset was held
out from the Combined CONEM setting; see Section 4.1. *These datasets were not used in Kumar
et al. [6], so basic generative classification conditioned only on class labels was used, not GEN-Z;
see Section 4.1.

training portion of the same dataset we are using for evaluation, e.g. an example from the test portion
Movie Reviews dataset would be classified using concept embeddings trained on the training portion
of the Movie Reviews dataset. In the second (the "Combined" setting), we use concept embeddings
trained on the training portion of all datasets other than Bitcoin Tweets. Bitcoin Tweets is not included
in either training setting, and is tested using concept embeddings from the Combined setting, to test
CONEM concept embeddings’ ability to generalize to new contexts.

Baseline We use Kumar et al. [6]’s GEN-Z method as a baseline. For datsets that Kumar et al.
[6] evaluated on, we use the exact same natural language prompts as they did as model input. For
datasets that Kumar et al. [6] did not evaluate on, we simply use a natural language representation of
the class label (e.g. "positive" or "negative") as model input.

4.2 Probing CONEM

Inputs per concept {64}
Noise tokens per input {7, 15, 31}

Training epochs {10, 20, 40}
Training batch size {4, 8, 16}
SGD learning rate {0.001, 0.01, 0.1}
SGD momentum {0.5, 0.9}

Table 3: Hyperparameter values used in training
different sets of linear probes. All possible com-
binations of these values were used, for 162 total
training regimes and 1,944 total probes.

We investigate the internal behavior of the model
in relation to CONEM using a series of linear
probes. We first construct a set of language
model inputs that consist of a concept embed-
ding token prepended to a sequence of non–
concept embedding tokens randomly sampled
from the model’s vocabulary (called "noise to-
kens" in Table 3), constructing 64 such inputs
per embedded concept. We then observed the
output of each hidden layer of the model when
given these noisy concept sequences as input.

These model hidden states served as input to
linear classifiers (probes), with one classifier per
model hidden layer (12 in our case with GPT-2).

Probes were trained using stochastic gradient descent (SGD) on a 50% split of available hidden
states, stratified by the concept in the LLM input that produced the hidden state, and evaluated on the
remaining 50%.

To reduce the impact of hyperparameter selection in training and evaluating our probes, we repeated
this experiment with a variety of settings to produce a large number of different training regimes. The
inventory of values is reported in Table 3.

We conduct probing only with concept embeddings trained in the Combined setting.

5 Results

5.1 Generative Classification Performance

Contextualized generative classification using CONEM concept embeddings trained in the Separate
setting performed inconsistently. On some datasets, most notably Yelp Reviews, they performed
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extremely well, considerably outpacing both chance performance and the GEN-Z baseline. On others,
most notably Movie Reviews, they performed worse than both chance and GEN-Z. This suggests that
CONEM, as we currently implement it, has weaknesses that manifest themselves only on datasets
with certain properties.

CONEM concept embeddings trained in the Combined setting fared poorly across all datasets. This
suggests that our current approach to CONEM is not usefully generalizable. This could be a result of
our choice of model: it is possible that GPT-2 does not effectively encode broad, stable concepts such
as those we are trying to represent with CONEM.

In testing concept embeddings composed via concatenation on the Amazon Reviews dataset, we
discover that the concept embeddings trained in the Separate setting perform better than natural
language input and reasonably better than chance (by a margin of 8.1 points). This suggests that such
composition did not significantly hinder model performance.

5.2 Probing Results

Figure 2: Aggregate probing results by concept and hidden layer. Values reported are accuracy.
Per-concept results report accuracy only on samples in which the listed concept was the true label.
"All" reports accuracy across all samples, regardless of true label. Hidden layers are numbered from
first in the model (1) to last in the model (12).

7



In general, we find a clear trend towards weaker predictions at later layers of the model. We also
observe that across the model’s layers, our probes are best able to identify concept embeddings of the
DocType and Domain types, followed by moderate ability to identify Sentiment embeddings,
and performing worst on Origin.

We hypothesize that Origin concepts are the least robustly encoded within GPT-2’s neural network,
whereas concepts within the DocType and Domain types are instead quite robustly encoded. There
does seem to be a straightforward intuition to this: Domain and DocType represent general concepts
that are useful across contexts, whereas Origin concepts are specific to individual named entities,
Twitter and Amazon and the like.

We further hypothesize that our probes’ middling performance in identifying Sentiment concept
embeddings is due to the varied nature of sentiment as a concept across domains. Recall that concept
embeddings used in probing were those learned in the Combined setting. The meaning of positive
sentiment can vary greatly between domains as different as film reviews and economic forecasting,
but in the Combined setting, <Sentiment: POSITIVE> nonetheless attempts to capture these
varied semantics in a single embedding. This being the case, Sentiment embeddings learned in
the Combined setting may not be strongly correlated to the model’s internal state and behavior across
inputs.

Of the independent variables in our various training regimes, as reported in Table 3, only training
epochs had a notable correlation with probe accuracy (r = 0.234). This is expected behavior in
machine learning, and as such, we do not believe this fact indicates anything of note about the
CONEM method.

6 Limitations and Future Work

Missing Context in Some "GEN-Z" Implementations As mentioned in Section 4.1, the Finance
Tweets, Econ News, and Bitcoin Tweets datasets did not have corresponding prompts published by
Kumar et al. [6], and natural language generative classification for these datasets was conditioned
only on class labels names without any contextualizing information. As we continue our work, we
will generate contextualizing sentences for these datasets using the methods described by Kumar et al.
[6].

Improving Concept Embedding Reusability Concept embeddings trained in the Combined setting
did not generalize well across datasets. We hypothesize that this may be a result of GPT-2 failing to
capture robust semantic information. Repeating these experiments with larger and more advanced
models may yield superior results, as such models are more likely to encode the kind of information
we are trying to embed via the CONEM method.

Concept Embedding Interpretability As we explore the CONEM method and the resulting
concept embeddings, the precise information these embeddings are capturing about models under
study remains an open question. We intend to explore the interactions between specific concept
embeddings and the models from which they are learned by probing those models’ behavior given
different concept embeddings as input. Initially, we will train a linear classifier to predict what
concept embedding(s) were input to a model given the resulting hidden activations at different layers
of the model. This should give us some information about where in the model the information
captured by different concept embeddings resides, and serve as a starting point for investigating the
precise nature of that information.

Additional Experimentation In the present work, we have done very little to compare different
techniques for training and using concept embeddings. Future training experimentation could include:

• Initializing each concept embedding to share the values of the existing embedding
for a word related to the embedded concept (e.g. initializing the embedding for
<SENTIMENT: POSITIVE> to the embedding for "positive").

• Including semantic (dis)similarity tasks in the training loss function to induce certain
properties into the concept embedding space.

• Using multiple tokens (in a specific order) per concept, to learn a higher-dimensional concept
embedding space.
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Future use experimentation could include:

• Directly comparing performance when concepts are represented via composition (e.g. rep-
resenting "somewhat negative" as a composition of <SENTIMENT: NEGATIVE> and
<SENTIMENT: POSITIVE>) to performance when the same concepts are represented by
a single trained concept embedding (<SENTIMENT: SOMEWHAT_NEGATIVE>.

• Representing combined concepts as the centroid of the constituent concept embeddings,
instead of their concatenation.

7 Conclusion

We introduce CONEM, a novel framework for training embeddings to represent concepts independent
of any particular linguistic expression of those concepts. By using representations learned directly
from the model, our approach bypasses the sensitivity language models have to the specific wording
of their prompts. We use CONEM to train fifteen concept embeddings across seven datasets in two
settings: one in which concept embeddings are trained from a single dataset, and one in which
concept embeddings are trained across all seven training sets. We use contextualized generative
classification to evaluate these concept embeddings on eight datasets: held out test data from our
seven training datasets, and one additional dataset completely unseen during training. We find that
the performance of concept embedding contextualized generative classification is inconsistent, but
generally comparable to or better than natural language contextualized generative classification, albeit
only in the Separate setting. We believe the CONEM framework shows promise, and propose various
steps for continuing to refine the method and the generalizability of the resulting concept embeddings.

We further probe our CONEM fine-tuned model using a linear probe at each hidden layer to determine
the signal strength of the learned concept embeddings throughout the model. We find a clear
delineation between concept types: nearly all DocType and Domain concepts were retrievable
up to the last layer, while Origin and Sentiment were not. While further investigation—such
as with a non-linear probe—would be needed for more robust results, our findings suggest that the
Origin and Sentiment concepts may have less robust representation within the model. Along
with the relatively weak performance of our method on the generative classification task, these results
suggest that future work should focus on experimenting with different combinations of datasets.

References
[1] Arora , A., Jurafsky , D., & Potts , C. (2024) CausalGym: Benchmarking causal interpretability methods

on linguistic tasks. In L.-W. Ku, A. Martins, and V. Srikumar, (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) pages 14638–14663, Bangkok,
Thailand: Association for Computational Linguistics.

[2] Brown , T. B., Mann , B., Ryder , N., Subbiah , M., Kaplan , J., Dhariwal , P., Neelakantan , A., Shyam ,
P., Sastry , G., Askell , A., Agarwal , S., Herbert-Voss , A., Krueger , G., Henighan , T., Child , R., Ramesh ,
A., Ziegler , D. M., Wu , J., Winter , C., Hesse , C., Chen , M., Sigler , E., Litwin , M., Gray , S., Chess , B.,
Clark , J., Berner , C., McCandlish , S., Radford , A., Sutskever , I., & Amodei , D. (2020) Language models are
few-shot learners. CoRR abs/2005.14165.

[3] Engels , J., Michaud , E. J., Liao , I., Gurnee , W., & Tegmark , M. (2025) Not all language model features
are one-dimensionally linear

[4] Go , A., Bhayani , R., & Huang , L. (2009) Twitter sentiment classification using distant supervision.
CS224N project report, Stanford 1(12):2009.

[5] Grattafiori , A., Dubey , A., Jauhri , A., Pandey , A., Kadian , A., Al-Dahle , A., Letman , A., Mathur , A.,
Schelten , A., Vaughan , A., Yang , A., Fan , A., Goyal , A., Hartshorn , A., Yang , A., Mitra , A., Sravankumar ,
A., Korenev , A., Hinsvark , A., Rao , A., Zhang , A., Rodriguez , A., Gregerson , A., Spataru , A., Roziere , B.,
Biron , B., Tang , B., Chern , B., Caucheteux , C., Nayak , C., Bi , C., Marra , C., McConnell , C., Keller , C.,
Touret , C., Wu , C., Wong , C., Ferrer , C. C., Nikolaidis , C., Allonsius , D., Song , D., Pintz , D., Livshits , D.,
Wyatt , D., Esiobu , D., Choudhary , D., Mahajan , D., Garcia-Olano , D., Perino , D., Hupkes , D., Lakomkin ,
E., AlBadawy , E., Lobanova , E., Dinan , E., Smith , E. M., Radenovic , F., Guzmán , F., Zhang , F., Synnaeve ,
G., Lee , G., Anderson , G. L., Thattai , G., Nail , G., Mialon , G., Pang , G., Cucurell , G., Nguyen , H., Korevaar
, H., Xu , H., Touvron , H., Zarov , I., Ibarra , I. A., Kloumann , I., Misra , I., Evtimov , I., Zhang , J., Copet , J.,
Lee , J., Geffert , J., Vranes , J., Park , J., Mahadeokar , J., Shah , J., Linde , J., Billock , J., Hong , J., Lee , J., Fu ,

9



J., Chi , J., Huang , J., Liu , J., Wang , J., Yu , J., Bitton , J., Spisak , J., Park , J., Rocca , J., Johnstun , J., Saxe ,
J., Jia , J., Alwala , K. V., Prasad , K., Upasani , K., Plawiak , K., Li , K., Heafield , K., Stone , K., El-Arini , K.,
Iyer , K., Malik , K., Chiu , K., Bhalla , K., Lakhotia , K., Rantala-Yeary , L., Maaten , L., Chen , L., Tan , L.,
Jenkins , L., Martin , L., Madaan , L., Malo , L., Blecher , L., Landzaat , L., Oliveira , L., Muzzi , M., Pasupuleti
, M., Singh , M., Paluri , M., Kardas , M., Tsimpoukelli , M., Oldham , M., Rita , M., Pavlova , M., Kambadur
, M., Lewis , M., Si , M., Singh , M. K., Hassan , M., Goyal , N., Torabi , N., Bashlykov , N., Bogoychev ,
N., Chatterji , N., Zhang , N., Duchenne , O., Çelebi , O., Alrassy , P., Zhang , P., Li , P., Vasic , P., Weng , P.,
Bhargava , P., Dubal , P., Krishnan , P., Koura , P. S., Xu , P., He , Q., Dong , Q., Srinivasan , R., Ganapathy , R.,
Calderer , R., Cabral , R. S., Stojnic , R., Raileanu , R., Maheswari , R., Girdhar , R., Patel , R., Sauvestre , R.,
Polidoro , R., Sumbaly , R., Taylor , R., Silva , R., Hou , R., Wang , R., Hosseini , S., Chennabasappa , S., Singh
, S., Bell , S., Kim , S. S., Edunov , S., Nie , S., Narang , S., Raparthy , S., Shen , S., Wan , S., Bhosale , S.,
Zhang , S., Vandenhende , S., Batra , S., Whitman , S., Sootla , S., Collot , S., Gururangan , S., Borodinsky , S.,
Herman , T., Fowler , T., Sheasha , T., Georgiou , T., Scialom , T., Speckbacher , T., Mihaylov , T., Xiao , T.,
Karn , U., Goswami , V., Gupta , V., Ramanathan , V., Kerkez , V., Gonguet , V., Do , V., Vogeti , V., Albiero , V.,
Petrovic , V., Chu , W., Xiong , W., Fu , W., Meers , W., Martinet , X., Wang , X., Wang , X., Tan , X. E., Xia ,
X., Xie , X., Jia , X., Wang , X., Goldschlag , Y., Gaur , Y., Babaei , Y., Wen , Y., Song , Y., Zhang , Y., Li , Y.,
Mao , Y., Coudert , Z. D., Yan , Z., Chen , Z., Papakipos , Z., Singh , A., Srivastava , A., Jain , A., Kelsey , A.,
Shajnfeld , A., Gangidi , A., Victoria , A., Goldstand , A., Menon , A., Sharma , A., Boesenberg , A., Baevski ,
A., Feinstein , A., Kallet , A., Sangani , A., Teo , A., Yunus , A., Lupu , A., Alvarado , A., Caples , A., Gu , A.,
Ho , A., Poulton , A., Ryan , A., Ramchandani , A., Dong , A., Franco , A., Goyal , A., Saraf , A., Chowdhury ,
A., Gabriel , A., Bharambe , A., Eisenman , A., Yazdan , A., James , B., Maurer , B., Leonhardi , B., Huang , B.,
Loyd , B., Paola , B. D., Paranjape , B., Liu , B., Wu , B., Ni , B., Hancock , B., Wasti , B., Spence , B., Stojkovic
, B., Gamido , B., Montalvo , B., Parker , C., Burton , C., Mejia , C., Liu , C., Wang , C., Kim , C., Zhou , C.,
Hu , C., Chu , C.-H., Cai , C., Tindal , C., Feichtenhofer , C., Gao , C., Civin , D., Beaty , D., Kreymer , D., Li ,
D., Adkins , D., Xu , D., Testuggine , D., David , D., Parikh , D., Liskovich , D., Foss , D., Wang , D., Le , D.,
Holland , D., Dowling , E., Jamil , E., Montgomery , E., Presani , E., Hahn , E., Wood , E., Le , E.-T., Brinkman ,
E., Arcaute , E., Dunbar , E., Smothers , E., Sun , F., Kreuk , F., Tian , F., Kokkinos , F., Ozgenel , F., Caggioni
, F., Kanayet , F., Seide , F., Florez , G. M., Schwarz , G., Badeer , G., Swee , G., Halpern , G., Herman , G.,
Sizov , G., Guangyi , Zhang , Lakshminarayanan , G., Inan , H., Shojanazeri , H., Zou , H., Wang , H., Zha , H.,
Habeeb , H., Rudolph , H., Suk , H., Aspegren , H., Goldman , H., Zhan , H., Damlaj , I., Molybog , I., Tufanov ,
I., Leontiadis , I., Veliche , I.-E., Gat , I., Weissman , J., Geboski , J., Kohli , J., Lam , J., Asher , J., Gaya , J.-B.,
Marcus , J., Tang , J., Chan , J., Zhen , J., Reizenstein , J., Teboul , J., Zhong , J., Jin , J., Yang , J., Cummings ,
J., Carvill , J., Shepard , J., McPhie , J., Torres , J., Ginsburg , J., Wang , J., Wu , K., U , K. H., Saxena , K.,
Khandelwal , K., Zand , K., Matosich , K., Veeraraghavan , K., Michelena , K., Li , K., Jagadeesh , K., Huang
, K., Chawla , K., Huang , K., Chen , L., Garg , L., A , L., Silva , L., Bell , L., Zhang , L., Guo , L., Yu , L.,
Moshkovich , L., Wehrstedt , L., Khabsa , M., Avalani , M., Bhatt , M., Mankus , M., Hasson , M., Lennie , M.,
Reso , M., Groshev , M., Naumov , M., Lathi , M., Keneally , M., Liu , M., Seltzer , M. L., Valko , M., Restrepo ,
M., Patel , M., Vyatskov , M., Samvelyan , M., Clark , M., Macey , M., Wang , M., Hermoso , M. J., Metanat ,
M., Rastegari , M., Bansal , M., Santhanam , N., Parks , N., White , N., Bawa , N., Singhal , N., Egebo , N.,
Usunier , N., Mehta , N., Laptev , N. P., Dong , N., Cheng , N., Chernoguz , O., Hart , O., Salpekar , O., Kalinli ,
O., Kent , P., Parekh , P., Saab , P., Balaji , P., Rittner , P., Bontrager , P., Roux , P., Dollar , P., Zvyagina , P.,
Ratanchandani , P., Yuvraj , P., Liang , Q., Alao , R., Rodriguez , R., Ayub , R., Murthy , R., Nayani , R., Mitra
, R., Parthasarathy , R., Li , R., Hogan , R., Battey , R., Wang , R., Howes , R., Rinott , R., Mehta , S., Siby ,
S., Bondu , S. J., Datta , S., Chugh , S., Hunt , S., Dhillon , S., Sidorov , S., Pan , S., Mahajan , S., Verma , S.,
Yamamoto , S., Ramaswamy , S., Lindsay , S., Lindsay , S., Feng , S., Lin , S., Zha , S. C., Patil , S., Shankar ,
S., Zhang , S., Zhang , S., Wang , S., Agarwal , S., Sajuyigbe , S., Chintala , S., Max , S., Chen , S., Kehoe ,
S., Satterfield , S., Govindaprasad , S., Gupta , S., Deng , S., Cho , S., Virk , S., Subramanian , S., Choudhury ,
S., Goldman , S., Remez , T., Glaser , T., Best , T., Koehler , T., Robinson , T., Li , T., Zhang , T., Matthews ,
T., Chou , T., Shaked , T., Vontimitta , V., Ajayi , V., Montanez , V., Mohan , V., Kumar , V. S., Mangla , V.,
Ionescu , V., Poenaru , V., Mihailescu , V. T., Ivanov , V., Li , W., Wang , W., Jiang , W., Bouaziz , W., Constable
, W., Tang , X., Wu , X., Wang , X., Wu , X., Gao , X., Kleinman , Y., Chen , Y., Hu , Y., Jia , Y., Qi , Y., Li , Y.,
Zhang , Y., Zhang , Y., Adi , Y., Nam , Y., Yu , Wang , Zhao , Y., Hao , Y., Qian , Y., Li , Y., He , Y., Rait , Z.,
DeVito , Z., Rosnbrick , Z., Wen , Z., Yang , Z., Zhao , Z., & Ma , Z. (2024) The llama 3 herd of models

[6] Kumar , S., Park , C. Y., & Tsvetkov , Y. (2023) Gen-z: Generative zero-shot text classification with
contextualized label descriptions

[7] Lester , B., Al-Rfou , R., & Constant , N. (2021) The power of scale for parameter-efficient prompt tuning.
CoRR abs/2104.08691.

[8] Li , K., Hopkins , A. K., Bau , D., Viégas , F., Pfister , H., & Wattenberg , M. (2024) Emergent world
representations: Exploring a sequence model trained on a synthetic task

[9] Lu , Y., Bartolo , M., Moore , A., Riedel , S., & Stenetorp , P. (2022) Fantastically ordered prompts and
where to find them: Overcoming few-shot prompt order sensitivity. In S. Muresan, P. Nakov, and A. Villavicencio,

10



(eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers) pages 8086–8098, Dublin, Ireland: Association for Computational Linguistics.

[10] Min , S., Lewis , M., Hajishirzi , H., & Zettlemoyer , L. (2022) Noisy channel language model prompting
for few-shot text classification. In S. Muresan, P. Nakov, and A. Villavicencio, (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) pages 5316–5330,
Dublin, Ireland: Association for Computational Linguistics.

[11] Nanda , N., Lee , A., & Wattenberg , M. (2023) Emergent linear representations in world models of
self-supervised sequence models

[12] Pang , B. & Lee , L. (2005) Seeing Stars: Exploiting Class Relationships for Sentiment Categorization
with Respect to Rating Scales. In K. Knight, H. T. Ng, and K. Oflazer, (eds.), Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05) pages 115–124, Ann Arbor, Michigan:
Association for Computational Linguistics.

[13] Radford , A., Wu , J., Child , R., Luan , D., Amodei , D., & Sutskever , I. (2019) Language models are
unsupervised multitask learners

[14] Rodriguez , J. D., Mueller , A., & Misra , K. (2025) Characterizing the role of similarity in the property
inferences of language models

[15] Sorensen , T., Robinson , J., Rytting , C., Shaw , A., Rogers , K., Delorey , A., Khalil , M., Fulda , N., &
Wingate , D. (2022) An information-theoretic approach to prompt engineering without ground truth labels. In
S. Muresan, P. Nakov, and A. Villavicencio, (eds.), Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) pages 819–862, Dublin, Ireland: Association for
Computational Linguistics.

[16] Wei , J., Bosma , M., Zhao , V. Y., Guu , K., Yu , A. W., Lester , B., Du , N., Dai , A. M., & Le , Q. V.
(2022) Finetuned language models are zero-shot learners

[17] Wei , J., Wang , X., Schuurmans , D., Bosma , M., Ichter , B., Xia , F., Chi , E., Le , Q., & Zhou , D. (2023)
Chain-of-thought prompting elicits reasoning in large language models

[18] Yao , Y., Dong , B., Zhang , A., Zhang , Z., Xie , R., Liu , Z., Lin , L., Sun , M., & Wang , J. (2022)
Prompt tuning for discriminative pre-trained language models. In S. Muresan, P. Nakov, and A. Villavicencio,
(eds.), Findings of the Association for Computational Linguistics: ACL 2022 pages 3468–3473, Dublin, Ireland:
Association for Computational Linguistics.

[19] Ye , J., Chen , X., Xu , N., Zu , C., Shao , Z., Liu , S., Cui , Y., Zhou , Z., Gong , C., Shen , Y., Zhou , J.,
Chen , S., Gui , T., Zhang , Q., & Huang , X. (2023) A comprehensive capability analysis of gpt-3 and gpt-3.5
series models

[20] Zhang , X. & Acharki , Y. (2022) Yelp reviews for senti-analysis binary -n/p+

[21] Zhang , X. & Yassir , A. (2022) Amazon reviews for sa fine-grained 5 classes

[22] Zhao , Z., Wallace , E., Feng , S., Klein , D., & Singh , S. (2021) Calibrate before use: Improving few-shot
performance of language models. In M. Meila and T. Zhang, (eds.), Proceedings of the 38th International
Conference on Machine Learning 139, pp. 12697–12706. PMLR.

11


	Introduction
	Related Work
	Methodology
	Generative Classification
	Datasets and Concept Embedding Inventory

	Experiment Design
	Evaluating Concept Embeddings
	Probing ConEm

	Results
	Generative Classification Performance
	Probing Results

	Limitations and Future Work
	Conclusion

